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The recent applications of nanosecond, megavolt-per-meter electric field pulses to biological systems show
striking cellular and subcellular electric field induced effects and revive the interest in the biophysical mecha-
nism of electroporation. We first show that the absolute rate theory, with experimentally based parameter input,
is consistent with membrane pore creation on a nanosecond time scale. Secondly we use a Smoluchowski
equation-based model to formulate a self-consistent theoretical approach. The analysis is carried out for a
planar cell membrane patch exposed to a 10 ns trapezoidal pulse with 1.5 ns rise and fall times. Results
demonstrate reversible supraelectroporation behavior in terms of transmembrane voltage, pore density, mem-
brane conductance, fractional aqueous area, pore distribution, and average pore radius. We further motivate and
justify the use of Krassowska’s asymptotic electroporation model for analyzing nanosecond pulses, showing
that pore creation dominates the electrical response and that pore expansion is a negligible effect on this time
scale.
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I. INTRODUCTION

Nanosecond time scale, megavolt-per-meter electric field
pulses have the virtue of causing significant electric field
induced effects in the cell interior and organelles which, on
longer pulse time scales, are protected by the cell plasma
membrane. Indeed, a burst of experimental results have
shown granule uptake, DNA fragmentation, calcium release,
platelet activation, lipid asymmetry destruction, electrically-
induced apoptosis, and tumor self-destruction �1–8�. These
observations trigger a renewed interest in the biophysical
mechanism of electroporation, and an initial exploration led
to the formulation of the supraelectroporation hypothesis �9�.
This was followed by a description of microdosimety for a
cell model with organelles �10�. A key question in under-
standing these distinct cellular and intracellular effects,
which we want to address in this paper, is whether membrane
pores can be created on a nanosecond time scale.

The electroporation hypothesis states that membrane-
percolating aqueous pores are created transiently within the
phospholipid portion of cell membranes. Electroporation is a
universal phenomenon by which cells can be loaded both
with small molecules �e.g., anticancer drugs, fluorescent trac-
ers� and large molecules �e.g., proteins and DNA�. There is
also growing interest in utilizing electroporation to transport
drug molecules through multicellular barriers such as solid
tumors and the stratum corneum of skin, as the conventional
application of electric field pulses of �1 kV/cm to cells and
tissue strongly increases ionic and molecular transport
through phospholipid-based cell membranes �11–18�. Al-
though some Joule heating always occurs as a secondary
effect, in most experiments the associated temperature rise is
small, and the main effects are attributed to electrostatic in-
teractions.

To put the present paper into context we briefly note the
past development of pore-based theories and models. The
initial poration theory was based on homogeneous nucleation
of membrane defects and the hypothesis of transient aqueous

pores in artificial planar bilayer membranes. This was de-
scribed in seven back-to-back papers by the Chizmadzhev
group, which combined both theoretical analysis and experi-
mental measurements �19–25�. Extensions of the theory can
be found in Refs. �26–28�. A pore creation energy barrier that
depends on the transmembrane voltage, Um, was indepen-
dently suggested �29,30�, and has been a central part of many
electroporation models. A key achievement of the early pore
theory is the prediction that the rupture of bilayer membranes
is a stochastic process, with a highly nonlinear dependence
on Um. Models based on the Smoluchowski equation �SE�
describe the evolution of pore size �19,31�, and resolve the
occurrence of either reversible or irreversible breakdown as a
striking feature of electroporation.

More specifically, an early challenge to theoretical models
was to explain the results of experiments that exposed a pla-
nar bilayer membrane to short electric pulses of 400 ns �32�.
The membrane fate in these experiments was irreversible
�rupture� for moderate Um, but reversible for larger Um. The
SE-based model demonstrates �33� that relatively few pores
are created for Um�0.5V, and the corresponding increase in
ionic membrane conductance, Gm, is insufficient to discharge
the membrane before pores reach a critical size that leads to
“runaway pore growth” and membrane destruction. The be-
havior for larger Um�1 V is in striking contrast. Many cre-
ated membrane pores lead to reversible electrical breakdown
�REB�, a high conductance state that protects the membrane,
and thus Gm may discharge before rupture can occur. An
extension of the SE-based model demonstrated that pore dy-
namics results in an approximate Um�t� plateau for exponen-
tially decaying pulses, a pore-induced maximum fractional
aqueous area of order 0.1%, and the membrane capacitance
was essentially unchanged �34�. Intracellular effects caused
by nanosecond time scale, extremely large pulses, has led to
a further use of SE-based models �35–40�. These recent SE-
based modeling results focus on ultrashort pulse behavior of
Um�t� at either or both the plasma membrane and organelle
membranes, with an emphasis on irreversible intracellular
effects.

PHYSICAL REVIEW E 74, 021904 �2006�

1539-3755/2006/74�2�/021904�12� ©2006 The American Physical Society021904-1

http://dx.doi.org/10.1103/PhysRevE.74.021904


The asymptotic model of electroporation was subse-
quently introduced �41–48�. It is equivalent to a two-state
model in which a local membrane region contains either no
pore or some number of minimum size pores. It represents a
simplified version of the SE-based models, in which only the
creation and destruction rates are retained, and changes in
Gm�t� are attributed entirely to the addition or slow subtrac-
tion of single-size pores. The asymptotic model is particu-
larly useful for describing the electrical response due to ul-
trashort pulses, as will be shown in this paper.

A basic feature of the SE-based model and the asymptotic
model is an absolute rate equation estimate of the pore cre-
ation time due to thermal fluctuations and an electrically re-
duced energy barrier, and also of the pore destruction rate
that involves local fluctuations near existing pores. The en-
ergy barrier to create a conducting membrane pore, Wp, de-
pends explicitly on local dielectric properties and the local
value of Um. A basic question is whether or not the fluctuat-
ing, multimolecular system that is identified with a mem-
brane pore can be plausibly described by such absolute rate
estimates, particularly for pulses with a nanosecond time
scale.

Molecular dynamics �MD� simulations �49–52� offer the
prospect of a more fundamental insight into the process of
pore creation and destruction, as well as the transport of ions,
molecules or even DNA through membrane pores �53�. Ini-
tial results are encouraging, in that the stochastic appearance
of hydrophilic transient aqueous pores occurs in those simu-
lations, that the fluctuating pore geometry is qualitatively
consistent with the early sketches of a toroidal geometry in
which the pore interior surface involves rearranged phospho-
lipid molecules, and that the coupling of MD modeling to
time dependent membrane charging is found to be consistent
with pore formation on a �5 ns time scale �40�. However, a
present drawback is that fine-grained MD models often re-
quire much larger electric fields than those used in experi-
ments, and that Um values required for pore formation far
exceed 1 V.

Coarse-grained models overcome this limitation �40�, but
by definition involve approximate interactions between the
molecules and ions of the system. The present computational
limitations on the simulation volume dictate the presence of
a small total numbers of ions to represent realistic concen-
trations of solubilized ions and molecules, but in turn give
rise to large fluctuations in transport quantities.

Looking forward, as improved MD results are obtained it
should be possible to recast their results in terms of func-
tional local models that can be assigned to spatially distrib-
uted models of cell membranes, such as the transport lattice
approach to modeling single and multiple cells and their re-
sponse to electromagnetic stimuli �9,10,54,55�. Both passive
interactions �e.g., local models for conductive and dielectric
properties of aqueous electrolytes, and cell membranes� and
active processes �e.g., local models for resting potential
sources, voltage-gated channels, and membrane electropora-
tion� can be assigned to appropriate sites throughout a sys-
tem model of a cellular system. Such approaches provide
modular, multiscale models that can describe electrical,
chemical, and thermal behavior simultaneously.

The outline of this paper is as follows. In Sec. II we
describe the self-consistent theoretical approach including

the equivalent electrical circuit of the system, creation and
destruction of membrane pores as well as their dynamics.
Based on this theory we analyze experimental data �28,56� in
Sec. III and by using these results consider the pore creation
on a nanosecond time scale. The supraelectroporation hy-
pothesis is further developed and presented in Sec. IV and a
complete set of results for the reversible electrical behavior
of the membrane is given for a 10 ns trapezoidal electric
field pulse of various strengths.

II. THEORY AND MODELING METHODS

A. Planar membrane patch model

The polar region of a spherical mammalian cell is repre-
sented by a small planar membrane patch. We use a slightly
modified version of a previously described bilayer membrane
�BLM� model �33,34�, in which the membrane response to
short electric pulses is analyzed by the electric circuit shown
in Fig. 1. In particular, we take the electrolyte dielectric
properties into account through the capacitance Ce and note
that experimental nanosecond pulses may contain significant
frequency components in the gigahertz range. The applied
voltage is Vapp, the electrolyte resistance is Re, and the mem-
brane is represented by a RmCm element, with the membrane
capacitance Cm and the membrane resistance Rm. The two
parallel contributions to the membrane resistance are due to
the static membrane resistance Rs and the time-dependent
change in Rp that results from the creation of conducting
membrane pores, thus 1/Rm=1/Rs+1/Rp. For simplicity, no
membrane resting potential is used. Passive membrane
charging of a spherical cell occurs on a time scale of
�chg=rcellCm�1/2�e,ex+1/�e,in�, which includes the cell ra-
dius rcell and external ��e,ex� and internal ��e,in� electrolyte
conductivities. We therefore choose the resistance of the
aqueous electrolyte charging pathway to be Re=�chg/Cm, and
Ce accordingly to assure the bulk electrolyte charging time
ReCe=0.6 ns. In a physiological medium we have
�e,ex��e,in, but there is a range of values for electrolyte
conductivities in different biological systems and experimen-
tal protocols. The transmembrane voltage obeys

FIG. 1. Equivalent circuit used in our planar cell membrane
patch model. We represent the membrane by a RmCm element,
which includes the time-dependent and nonlinear pore resistance Rp

as well as the static membrane resistance Rs. The electrolyte resis-
tance and capacitance are Re and Ce, respectively, and the applied
voltage is Vapp. The switch is closed for the duration of the applied
electric field pulse �pulse. After the pulse ends the switch is open,
thus allowing the membrane to discharge only through the mem-
brane pores and existing channels. Um is measured across Cm.
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�Cm + Ce�
dUm

dt

= �Ce
dVapp

dt
+

Vapp

Re
− Um�Gm„n�rp,t�… +

1

Re
	 t � �pulse,

− UmGm„n�rp,t�… t � �pulse,



�1�

from which the time-dependent transmembrane voltage Um
follows. If the membrane conductance Gm=Gm

s +Gm
p =1/Rm

were unchanged during the applied electric field pulse of
duration �pulse, Eq. �1� would have a simple solution in terms
of exponential functions. But Um values on the order of
Um�1 V have the twofold effect of creating significant
numbers of conducting pores and expanding the radius �rp�
of existing pores. The membrane pore conductance Gm

p �t� is
thus a function of the pore-size distribution n�rp , t�. The pro-
cess of pore creation and destruction as well as their time-
dependent pore-size distribution will be described by a con-
tinuum approach in the following two sections. All values of
model parameters are given in Table I.

B. Smoluchowski equation-based models of electroporation

The biophysical mechanisms of electroporation and REB
of biological membranes can be described by using the SE
�19,31�

�n

�t
=

�

�rp
�Dp� �n

�rp
+

n

kT

��W

�rp
�	 , �2�

where n�rp , t�drp is the number of membrane pores between
rp and rp+drp at time t, Dp is the diffusion constant of pores
in pore radius space, �W�rp ,Um� is the pore energy, and kT
is the thermal energy. The dynamic pore energy depends on
Um and hence Eq. �2� describes the change in the pore dis-

tribution n�rp , t� due to diffusion and time-dependent drift.
As a result the conductance of the membrane, Gm(n�rp , t�),
exhibits highly nonlinear time-dependent behavior.

The total pore energy �W�rp ,Um� is a sum of mechanical
and electrical contributions �33,34,57�. The mechanical con-
tribution, Wm�rp�, includes the edge energy per unit length �
and the surface tension � of the membrane-water interface.
As reference energy we choose the mechanical energy
Wm�rp,min� at the minimum hydrophilic pore radius
rp,min=0.8 nm and subtract it to obtain

�Wm = 2	��rp − rp,min� −
	�

2
�rp

2 − rp,min
2 � . �3�

The mechanical pore energy determines the equilibrium
pore density neq�rp�=neq�rp,min�exp�−�Wm�rp� /kT�, with
neq�rp,min� derived from a boundary condition in the next
section.

The electric contribution to the pore’s energy, �Wel,
which is gained by expanding pores from radius rp,min to rp,
results from the radial displacement of the lipid cylindrical
walls of the pore by the aqueous electrolyte. Thus
�Wel�rp ,Um� leads to pore expansion at elevated values of
Um. As described previously �27,33,34,57�, the electric con-
tribution is

�Wel„rp,Um�t�… = −

0�
w − 
l�	

dm
Um

2 �t�

rp,min

rp

�2�r�rdr ,

�4�

which is expected to be valid for sufficiently small pores
�rp�dm, see Ref. �46��. Equation �4� includes the membrane
thickness dm, the permittivity of vacuum 
0, and the electro-
lyte �
w� and local lipid �
l� dielectric constant. Furthermore,
the function

TABLE I. Membrane and model parameters.

Parameter Description Value

rcell cell radius ��m� 10

dm membrane thickness �nm� 5


m membrane relative permittivity �F m−1� 5
0


l �local� lipid relative permittivity �F m−1� 2.1
0


w=
i electrolyte relative permittivity �F m−1� 80
0

Cm=
mAm/dm membrane capacitance �F� 8.8
10−14

�0 attempt rate density �s−1m−3� 3
1036

rs hydrated Cl− radius �nm� 0.12

�e bulk electrolyte conductivity �S m−1� 1.2

T temperature �K� 293

rp,min minimum pore radius �nm�, Ref. �42� 0.8

� pore edge energy �J m−1�, Ref. �33� 2
10−11

� membrane surface energy �J m−2�, Ref. �75� 10−5

n relative size of pore entrance region, Ref. �59� 0.15

Rs static membrane resistance ���, Ref. �76� 5.6
108

Dp pore diffusion coefficient �m2 s−1�, Ref. �33� 5
10−14
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��rp,rs,Um� =
Rint�rp,rs,Um�

Rint�rp,rs,Um� + Rspd�rp�
�5�

includes the spreading resistance Rspd�rp� and the internal
pore resistance Rint�rp ,rs ,Um�. The latter contains the steric
hindrance H�rp ,rs� of ions with radius rs and the partition
function K�rp ,Um� and all together give rise to a non-Ohmic
pore conductance. All functions are given in Appendix A.

Having the pore distribution at our disposal we obtain the
membrane pore conductance from

Gm
p �rs,Um,t� =
 n�rp,t�

Rspd�rp� + Rint�rp,rs,Um�
drp. �6�

Electroporation pulses can change the membrane pore con-
ductance over several orders of magnitude, and we use Gm

p

self-consistently with Eq. �1� for the equivalent electrical cir-
cuit in order to determine the electric behavior of the mem-
brane.

C. Absolute rate equation

Membrane pore formation and destruction initiate and ter-
minate the dynamic membrane pore evolution. In our ap-
proach we focus on conducting hydrophilic pores that give
rise to a substantial change in membrane pore conductance
Gm

p . The formation �destruction� of these membrane states is
considered by an absolute rate model describing the crossing
of an energetic barrier Wp from �to� nonconducting hydro-
phobic pores to �from� hydrophilic membrane pores. Further-
more the rate of change in the number of hydrophilic pores

Ṅp,min is assumed to occur only for pores with minimum
hydrophilic pore radius �which corresponds to the local mini-
mum of the hydrophilic pore energy at Um=0 V, see Ref.
�43��, and is given as the difference of creation and destruc-
tion rates

Ṅp,min = Ṅc,min − Ṅd,min. �7�

The absolute rate equation is a well established approach to
model homogeneous nucleation of membrane pores that in-
volve multimolecular rearrangements of phospholipids
�19,29,33,34,41,58–60�. The Arrhenius-type expression,

Ṅc,min = A0 exp�− Wp/kT� , �8�

gives the rate of pore creation and involves a prefactor A0
and the energetic barrier Wp. The energetic barrier Wp to pore
formation is reduced by the applied electric field, and we
expect Wp to depend on Um

2 �t� if membrane lipid polarization
dominates over permanent dipoles. We can thus write
Wp=�c−BUm

2 �t�. Here �c is a fixed energy barrier between
the hydrophilic and hydrophobic membrane pore states and
B is a model parameter. This approach assumes that pore
creation is a stochastic process and can occur anywhere in
the membrane. The prefactor A0 includes the attempt rate
density �0 �see Appendix B� multiplied by the volume of the
phospholipid membrane component, Flip Am dm, where Flip is
the membrane’s area fraction of phospholipids and Am is the
membrane area of the membrane patch. Typical values are

Flip�0.5 for the cell plasma membrane, Flip�0.25 for the
inner mitochondrial membrane �61�, and Flip=1 for the pla-
nar patch cell membrane model used here. The creation rate
thus reads

Ṅc,min = �0Amdm exp�− �c + BUm
2 �t�

kT
	 . �9�

As in previous models �34� we assume that pore destruc-
tion contains an Arrhenius factor as well, but only involves
thermal fluctuations in the neighborhood of a pore within a
volume Vpore�	dm�rp,min+dm/2�2=1.7
10−25 m3. Then the
destruction rate is

Ṅd,min = n�rp,min,t�� exp�− �d/kT� , �10�

where Np,min�t�=n�rp,min , t�dr is the number of pores at the
minimum pore radius, the prefactor � has the unit of length
over time, and �d is the energetic barrier for pore destruction.
In the case of rapid membrane discharge, Um has returned to
the prepulse value at the experimentally observed pore life-
times �milliseconds or orders of magnitude longer�. This
leads to a Um-independent destruction rate.

The equilibrium state at zero transmembrane voltage ex-
hibits a constant mean value for the number of membrane
pores. Thus the creation and destruction rates are equal, and
the pore density at rp,min is given by

neq�rp,min� =
A0

�
exp��− �c + �d�/kT� . �11�

As a result we can rewrite Eq. �7� as follows:

Ṅp,min = A0e−�c/kT�eBUm
2 /kT −

Np,min�t�
Np,min

eq 	 , �12�

which is equivalent to the asymptotic electroporation model
�41,42� in the limit of a Um-independent destruction energy
barrier �d.

III. PORE CREATION TIME SCALES

A. Low applied voltages

Recent studies of conductance fluctuations under low ap-
plied voltages by Melikov et al. �28� measure the creation
time of a single membrane pore. The appearance of one pore
is a minimal electroporation event with a small change in
membrane conductance on the order of 400 pS �28�. We be-
lieve that this experiment provides the simplest method to
adjust basic membrane parameters in our theory. Other pre-
vious approaches �59� analyzed membrane current data to
adjust model parameters, which add another set of assump-
tions for the pore conductivity �see Appendix A�. Melikov’s
results are displayed in Figs. 2 and 3, which show the cre-
ation time for a single membrane pore, tlag, as a function of
Um and applied voltage Vapp, respectively. In their measure-
ments, the pore creation time scale is on the order of seconds
and hence significantly larger than the membrane charging
time, tlag��chg. Then Um is essentially the applied voltage
Vapp because Rm�Re, and the integrated creation rate for the
appearance of one membrane pore yields
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1 = 

0

tlag

A0 exp�− �c + BVapp
2

kT
	dt

= A0 exp�− �c + BVapp
2

kT
	tlag. �13�

From Eq. �13� we have on a logarithmic scale

ln�tlag� = −
BVapp

2

kT
− ln�A0e−�c/kT� . �14�

This is a quadratic dependence of the logarithmic time lag on
the critical voltage Um

c =Vapp at which the first membrane

pore appears. A �2 fit to the experimental data is shown in
Fig. 2 and yields A0 exp�−�c /kT�=10−2 s−1 and B
=20 kT V−2. The value of the spontaneous creation rate de-
pends on the membrane area in Melikov’s experiment
�Am=10 �m2�. This gives a creation rate density of
A0 /Am exp�−�c /kT�=109 s−1 m−2.

We can use these results to map out some relevant infor-
mation about the free-energy membrane pore landscape.
From the definition of A0 in Eq. �9�, the attempt rate density
�0 in Eq. �B1�, and the experimentally based parameter for

Ṅc,min we can deduce the fixed creation energy barrier to be
�c=44 kT. Given that this value appears in the literature

FIG. 2. Mean creation time for a single pore in the planar patch model as function of transmembrane voltage. The Melikov data are fitted
according to Eq. �14�, and the parameters are subsequently used to evaluate tlag of the absolute rate equation model. The two sets of
membrane charging times correspond to �A�: Frey’s experiment on Jurkat cells ��chg,A=0.1 �s�, and �B�: Hibino’s experiment on sea urchin
eggs ��chg,B=1.0 �s�. The microsecond time scale is reached at about Um�1V with a strong dependence on the charging time constant. The
nanosecond pore creation time scale is reached at about Um�1.2 V, and agrees in this regime with the short-time limit represented by Eq.
�18�. The influence of the pulse rise time is insignificant for the actual value of Um at which the first membrane pore occurs. Pores can be
created at any of the given Um values, and there appears to be no threshold for electroporation. However, each Um value corresponds to a
particular time scale above which electroporation occurs.

FIG. 3. Mean creation time for a single pore
in the planar patch model as function of the ap-
plied voltage. Parameters are chosen to represent
a mammalian cell such as in Frey’s experiment
�set A, �chg=0.1 �s, �rise=5 ns�, and Hibino’s ex-
periment on sea urchin eggs �set B, �chg=1 �s,
�rise=0.3 �s�. The Hibino data point must be in-
terpreted as an upper time limit �with error bars
corresponding to the temporal resolution� for the
onset of poration, which is indicated by a down-
ward pointing arrow. The charging time �chg and
the pulse rise time �rise both cause an increase in
the value of the applied voltage necessary to ob-
tain single pore formation at a given tlag.
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�42–44,59� and is inferred from conductivity measurements
on not exactly the same biological system, we derive some
confidence in this basic parameter for membrane electropo-
ration. Considering the mechanical energy of a minimum
size pore Wm�rp,min�=25 kT, we can also estimate the energy
barrier for pore destruction as �d=�c−Wm�rp,min�=19 kT.

Another experimental result of Melikov et al. �28� is the
mean pore lifetime of �p�3 ms. We use this value to deter-
mine the equilibrium pore number Np,min

eq in Eq. �12� and
have

Np,min
eq = �pA0 exp�− �c/kT� . �15�

We thus find Melikov’s membrane patch to have Np,min
eq

=3
10−5 pores with minimum radius at Um=0 V, which
corresponds to a minimum size pore density of Np,min

eq /Am
=3.3
106 m−2. This is a time-averaged value. Only occa-
sionally does a pore appear via spontaneous fluctuations and
then vanishes according to the mean pore lifetime �p. The
number of transported ions and molecules through this small
number of equilibrium pores can be neglected. The experi-
mentally determined parameters of our model are shown in
Table II. This sets the basis for the consideration of pore
formation time scales due to stronger and shorter electrical
pulses in the remainder of this paper.

B. Strong nanosecond electric field pulses

Nanosecond, megavolt-per-meter electric field pulses
achieve a variety of cellular and intracellular effects such as
calcium activation, DNA laddering, lipid asymmetry destruc-
tion, and arguably the most important to date, electrically-
induced apoptosis �2–7�. A key question in understanding the
biophysical and biochemical mechanisms which lead to these
effects is whether membrane pores can be created on a nano-
second time scale.

For the strong applied electric fields under consideration,
the first membrane pore appears during the membrane charg-
ing process. Let us first consider a rectangular pulse for
which an approximate expression for the time dependence of
Um is

Um�t� = Vapp�1 − e−t/�chg� . �16�

Equation �16� is a simple expression to gain some further

insights, and agrees with the exact but lengthy rectangular
pulse solution, given in Ref. �62�, within 2% error. We nu-
merically integrate

1 = A0 exp�− �c/kT�

0

tlag

eBUm
2 �t�/kTdt , �17�

to obtain the creation time tlag for the first membrane pore.
The result in Fig. 2 shows a deviation from the result of Eq.
�14�, which sets in as the membrane charging time �chg is
approached. Two sets of systems are considered. Set A is the
mammalian cell discussed in Sec. II A with a charging time
constant of �chg=0.1 �s, and is related to the very recent set
of voltage-imaging experiments by Frey et al. �63� on Jurkat
cells. Set B corresponds to the sea urchin eggs experiments
discussed by Hibino et al. �56�, which have �chg=1 �s. For
even shorter time scales than �chg there appears an offset, a
lengthening of the pore creation time as a consequence of
membrane charging delay. As such, the pore creation time
for tlag��chg appears to depend on the external and internal
electrolyte conductivities, whereas in the regime of
tlag��chg �such as in Melikov’s experiments� the pore cre-
ation time does not. As presented in Fig. 2, the well-known
Um value of about 1 V for electroporation corresponds to a
microsecond pore formation time scale, as indeed inferred by
Hibino’s data �56�. However, there appears to be no thresh-
old for electroporation, as pores can be formed for any Um
value given in Fig. 2. What is decisive for the experimental
outcome though is the time scale over which electroporation
occurs.

The short-time limit of t��chg in Eq. �16�, for which Um
has a linear dependence on time as Um�t�=Vappt /�chg, can be
made explicit. Performing the integration in Eq. �17� we de-
rive the condition

1 = A0 exp�− �c/kT�
�	kT�chg

2�BVapp

erfi� �BVapp

�kT�chg

tlag� , �18�

with the complex error function erfi�x�=erf�ix� / i. Equation
�18� represents the short-time limit and is shown in Fig. 2 to
be reached by the full numerical solution at tlag�10 ns. We
suggest here that the microsecond time scale at the conven-
tional Um�1 V is not the limit yet for the pore creation time
scale, as the nanosecond time scale can be reached at a trans-
membrane voltage of about Um�1.2 V.

TABLE II. Model parameters based on the Melikov experiment.

Model Parameters Description Value

Am membrane area �m2� 10
10−12

Np,min
eq /Am equilibrium pore density �m−2� 3
106

�c fixed creation energy barrier �kT� 44

�d fixed destruction energy barrier �kT� 19

A0 /Am exp�−�c /kT� pore creation rate density �s−1 m−2� 1
109

B parameter in Eq. �9� �kT V−2� 20

�p mean pore lifetime �s� 3
10−3
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C. Influence of the pulse rise times

The characteristic rise ��rise� and fall ��fall� times of an
experimental pulse may have an additional influence on the
creation time of membrane pores. We consider an idealized
trapezoidal pulse �62� that results in a time-dependent Um�t�
according to

Um�t� = Um,t�t� − Um,t�t − �rise� ,

Um,t�t� = Vapp�K1
t

�rise
+ K2�1 − e−t/�1� + K3�1 − e−t/�2�	 .

�19�

Explicit expression for the functions K1 ,K2 ,K3, and the
membrane charging time �1 and the bulk electrolyte charging
time �2 are given in Appendix C. By using Eq. �19� we
readily calculate tlag from Eq. �17�. Figure 3 shows the
pore creation time as function of the applied voltage
Vapp=Eapprcell without the influence of the pulse rise time
according to Eq. �16� and including the rise time given by
the Um�t� dependence in Eq. �19�. The overall effect of the
pulse rise time is to further increase the value of the applied
voltage necessary to obtain the first membrane pore at a
given tlag.

Other previous experimental results found pore formation
in the microsecond range for an estimated transmembrane
voltage of Um�1 V, which agrees with the relevant range in
Fig. 2 for set B. More specifically, Hibino et al. �56� applied
a 400 V/cm pulse on sea urchin eggs and found initial mem-
brane poration to occur as early as 0.5 �s, their earliest mea-
surement. We find the measured limit on the pore formation
time to be consistent with the prediction of the absolute rate
equation, �see Fig. 3�. Hibino’s experiment though must be
regarded as an upper time limit for pore formation as earlier
times cannot be ruled out. We do not attempt to translate Vapp
in Hibino’s voltage, at which initial electroporation appears,
into a corresponding Um as the error bars would be quite
substantial.

IV. SUPRAELECTROPORATION

A complete electrical characterization of a cell membrane
response to nanosecond, megavolt-per-meter pulses exhibits
reversible supraelectroporation features. In particular, Figs.
4�a�–4�f� show the transmembrane voltage, the total pore
number, the membrane conductance, the pore distribution,
and average pore radius, and the fractional aqueous area for
a 10 ns trapezoidal pulse �7 ns wide flat top, rise and fall
times of 1.5 ns� for various electric field strengths. The trans-
membrane voltage at a field strength of 100 kV/cm and
50 kV/cm shows a REB peak at Um�1.4 V, at which a
huge burst of Np=106 membrane pores have been created
within Am. A colossal increase of membrane conductance Gm
by over ten orders of magnitude is the consequence. The
hallmark of supraelectroporation is the order of magnitude of
membrane pores �10�. 103–104 more pores are created
within Am than in conventional electroporation protocols,
which for mammalian cells involves electrical pulses of
102 to 103 V/cm and durations of 100 �s to 50 ms. Su-

praelectroporation is expected to be cell-size independent �9�
and results in the appearance of substantially increased aque-
ous fractional areas of up to 25% for the highest field
strength used. This result clearly suggests, that for even
higher field strengths the present electroporation model
breaks down and needs to be reconsidered. The second hall-
mark of supraelectroporation is the size of the membrane
pores. As seen in Fig. 4�e�, these pores are mainly minimum
sized, as the electric field pulse is so short that pores have
insufficient time to expand. The consequences for transport
are significant, as only small ions and molecules are able to
pass through the membrane pores, avoiding the release of
bigger molecules and biologically active compounds such as
DNA and proteins and thus preventing prompt necrosis. Also
traditional electroporation biomarkers such as propidium io-
dide are inhibited from crossing the plasma membrane
through the minimum sized pores. This does not rule out
secondary transport processes such as endocytosis by a
stimulated cell.

These findings support the use of Krassowska’s
asymptotic electroporation model �41,42�, which can be
rederived in our approach in the case of negligible pore
expansion. This statement and its relation to the pore radius
diffusion constant in the SE are further developed in Appen-
dix D. A third hallmark of supraelectroporation, which we
mention in passing and is demonstrated elsewhere �10,64�
relates to significant current and field redistribution. Su-
praelectroporation is pervasive, occurring over the entire
plasma membrane �9�, and even in subcellular membranes
such as the nucleus �10� and the mitochondria, and as such is
expected to play a decisive role in the induction of apoptosis
by nanosecond electric field pulses.

As shown in Fig. 4�a�, the subthreshold 10 ns pulses with
a field strength of 1 and 10 kV/cm are not able to cause REB
of the membrane, and the pore number and membrane con-
ductance is changed insignificantly. However, as the mem-
brane discharge takes longer for the lower field strengths,
transport in cells may then become dominated by voltage-
gated channels at supraphysiological voltages. This is a re-
lated area of research in which relatively little is known, but
electrical denaturation of membrane proteins has been ex-
perimentally demonstrated �65,66�.

V. CONCLUSIONS

The absolute rate equation describes the formation of
membrane pores over a wide range of time scales. We used
Melikov’s data at low applied voltages �28� to specify the
parameters of the absolute rate equation within the regime of
seconds. We extrapolate this theory then to higher applied
voltages and shorter time scales. By taking into account the
membrane charging time constant and the pulse rise time we
find consistency with Hibino’s �56� set of data in the micro-
second regime, and a consistence with membrane pore for-
mation on a nanosecond time scale for extremely high elec-
tric field strengths. In light of relatively little quantitative
experimental data in the microsecond regime, we believe a
reconsideration of this conventional electroporation regime
with the now available superior time-resolution dyes could
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yield tremendous progress toward a full quantitative under-
standing of electroporation.

Modeling based on the SE predicts reversible supraelec-
troporation behavior of the membrane upon the application
of megavolt-per-meter electric field pulses. These pulses can
only be used on a nanosecond time scale without causing a
significant temperature rise. The thermally limited pulse du-
ration in turn implies rapid rise and fall times. The electrical
response of the membrane is characterized through many

minimum-sized pores, which give rise to a rapid change of
membrane conductance by ten orders of magnitude, as well
as rapid discharge of the membrane after the end of the
pulse.
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APPENDIX A: SINGLE PORE CONDUCTANCE

We combine previous models �33,34,59� to obtain the
single-pore ionic conductance gp�rp� that depends on
voltage-dependent partitioning, steric hindrance, and the
spreading resistance. Strictly, each ion species s with its hy-
drated ion radius rs and valence zs gives rise to a particular
ionic conductance. Thus in general we expect the depen-
dence

ip,s = gp�rp,rs,zs�Um. �A1�

Here we can use Cl− as a surrogate for all of the three small
ion pore conductances gp,Cl−, gp,K+, and gp,Na+, present in
typical extra- and intracellular electrolytes. The spreading
resistance Rspd �67� on both sides of the membrane and the
internal pore resistance Rint in terms of the dimensionless
steric hindrance factor H�rp ,rs� and the partitioning coeffi-
cient K�rp ,Um� are

Rspd�rp� =
1

2rp�e
, �A2�

Rint�rp,rs,Um� =
dm

�eApH�rp,rs�K�rp,Um�
. �A3�

As in previous models �33,34,57� we use Renkin’s steric
hindrance factor for H�rp ,rs� �68�:

H�rp,rs� = �1 − � rs

rp
�	2�1 − 2.1� rs

rp
� + 2.09� rs

rp
�3

− 0.95� rs

rp
�5	 . �A4�

The voltage dependent partitioning coefficient K�rp ,Um�
takes into account the electrostatic energy barrier for an ion
to enter a pore. Following Glaser et al. �59�, we use a
Um-dependent partition coefficient

K�rp,Um� =
evm − 1

w−evm − w+ , �A5�

that favors ion entry as Um increases �9,42�. With the
monovalent ion charge e we have defined a dimensionless
voltage vm=eUm/kT and the auxiliary function is

w± =
w0ew0±nvm ± nvm

w0 ± nvm
. �A6�

Here, n is the relative size of the entrance region of the pore
�59� and w0�rp� represents the electrostatic Born energy to
place an ion in the middle of a finite-size pore divided by the

thermal energy. The bulk self-energy of an ion with radius rs
inside the membrane pore is increased due to image charges
and was calculated by Parsegian �69,70� for an infinitely
long pore. We correct for finite membrane-size effects by
carrying out a three-dimensional calculation of the electro-
static energy to place an ion in the center of a pore of given
radius. This yields for a membrane of dm=5 nm:

w0�rp� =
1

kT

�zse�2

4	
lrp
P� 
l


w
�4 exp�− 0.98rp� + 1

5
. �A7�

The rightmost factor of Eq. �A7� is an analytical fit to the
numerically obtained electrostatic energy for the cylindrical
pore-geometry shown in Fig. 5, and P�
l /
w�=0.17 is a func-
tion of the lipid and electrolyte permittivities �69,70�.

With Rspd�rp� and Rint�rp ,rs ,Um� in series the current
through a single pore is

ip,s�rp,rs� =
1

Rspd + Rint
Um = �e

Aeff�rp,rs,Um�
dm

Um, �A8�

where we have introduced an effective area factor Aeff,

Aeff�rp,rs,Um� =
ApH�rp,rs�K�rp,Um�

1 +
ApH�rp,rs�K�rp,Um�

2rpdm

. �A9�

Because the effective area is smaller than the membrane pore
area, Aeff�Ap=	rp

2, the main consequence of ion partition-
ing and hindrance is a reduction of the pore conductance
with respect to the bulk electrolyte conductivity. As a conse-
quence the pore conductance becomes a nonlinear �nono-
hmic� function of transmembrane voltage and depends both
on the pore and ion radius.

FIG. 5. The Born energy associated with ion partitioning into a
membrane pore of cylindrical shape �shown in the inset� as function
of �a� pore length �for a pore radius of rp=1 nm� and �b� pore radius
�for a pore length of dm=5 nm�. Finite-size membrane pores exhibit
a substantial reduction of the Born energy in comparison with Par-
segian’s �70� infinite pore length results.
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Pores of different radii therefore have different contribu-
tions to the total membrane pore conductance Gm

p �t�, which
is thus defined by the pore-size distribution n�rp , t�. The total
ionic conduction current through the membrane pores for ion
species s is

Ip,s�t� =
 ip,sn�rp,t�drp

= �e
Um�t�

dm

 Aeff�rp,rs�n�rp,t�drp

= Gm,s
p �t�Um�t� . �A10�

APPENDIX B: ATTEMPT RATE DENSITY AND LIPID
FLUCTUATIONS

The microscopic picture behind the attempt rate density
�0 was formulated, to our knowledge, for homogeneous de-
fect nucleation in thin films �soap bubbles, fluid lipid mem-
branes�. However, it is also applicable to the dissipation of
otherwise superfluid helium currents �71�, and it is related to
the fundamental frequency of atomic collisions per unit vol-
ume. We are interested here in the frequency of lateral lipid
molecules fluctuations. A simple estimate can be obtained by
treating the lateral fluctuations of the lipid heads in a bilayer
leaflet as an ideal two-dimensional gas. A cutoff spatial dis-
placement of the lipid molecules is �x=0.15 nm, above
which water molecules are expected to start penetrating the
membrane. Taking the molar mass of the lipid molecules to
be approximately M =300 g mol−1, and using M�v2� /2
=NAkT, we can estimate the time between collisions as �t
=�x /��v2�=1.2
10−12 s. This picosecond time scale corre-
sponds to approximately 800 collisions between the lipids in
1 ns, and a lipid fluctuation frequency of 8
1011 s−1. It is
within the upper end of the bandwidth of observed lipid fluc-
tuation frequencies 107 s−1����1012 s−1 �72�.

By taking an average area of lipid heads of Alip
=0.6 nm2 �73� and assuming that a rearrangement of about
100 phospholipids are involved in the creation of a hydro-
philic membrane pore, we estimate the attempt rate density
to be

�0 =
1

100Alipdm�t
= 3 
 1036 m−3 s−1. �B1�

The main conclusions in this paper are not affected by what-
ever the effective value of �0 would be, as we extract the

complete creation rate Ṅc,min from experimental data. How-
ever, as future MD simulation may be able to map out the
complete free energy dispersion of membrane pores �and the
crossover from hydrophobic to hydrophilic states� such that
ab initio values for the pore creation energy �c and the pore
destruction energy barrier �d can be obtained, it should be
possible to infer the relevant value �or range of values� for �0
from the bandwidth of lipid fluctuation frequencies.

APPENDIX C: TRAPEZOIDAL PULSE TRANSMEMBRANE
VOLTAGE DEPENDENCE

This section contains a collection of the definitions and
abbreviations used in Sec. III C �and derived in Ref. �62�� to
describe the initial course of the transmembrane voltage for
an idealized trapezoidal electric pulse with rise time �rise. The
functions K1, K2, and K3 are given by

K1 =
a1

b1
,

K2 =
a2

2b1
−

a1b2

2b1
2 +

a1b3

b1
+

a2b2

2b1
−

a1b2
2

2b1
2 − a3

�b2
2 − 4b1b3

,

K3 =
a2

2b1
−

a1b2

2b1
2 −

a1b3

b1
+

a2b2

2b1
−

a1b2
2

2b1
2 − a3

�b2
2 − 4b1b3

, �C1�

in which the following constants are defined for the situation
of identical internal and external electrolytes ��e,ex=�e,in

=�e�:

a1 = 3dm�e��e�3rcell
2 − 3dmrcell + dm

2 � + �m�3dmrcell − dm
2 �� ,

a2 = 3dm�2�e
w�3rcell
2 − 3dmrcell + dm

2 � + ��m
w + �e
l�


�3dmrcell − dm
2 �� ,

a3 = 3dm
w�
w�3rcell
2 − 3dmrcell + dm

2 � + 
l�3dmrcell − dm
2 �� ,

b1 = 2rcell
3 ��m + 2�e���m + 0.5�e� − 2�rcell − dm�3��m − �e�2,

b2 = 2rcell
3 ��e�0.5
l + 
w� + �m�2.5
w + 2
l� + �e�
w + 2
l��

+ 2�rcell − dm�3�2�e�
l − 
w� + �m�
w − 2
l + 
w�� ,

b3 = 2rcell
3 �
l + 2
w��
l + 0.5
w� − 2�rcell − dm�3�
l − 
w�2.

�C2�

Furthermore, the time constants

�1 =
2b3

b2 − �b2
2 − 4b1b3

,

�2 =
2b3

b2 + �b2
2 − 4b1b3

�C3�

correspond to the membrane charging time constant ��1� and
the bulk electrolyte charging time constant ��2�.

APPENDIX D: NANOSECOND PORE EXPANSION AND
THE ASYMPTOTIC MODEL

Supraelectroporation leads to a huge number of mem-
brane pores of minimum size. In particular, Fig. 4�e� shows
that the mean pore radius hardly changes over the time scale
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of the 10 ns pulse. Hence membrane pore creation dominates
the electrical response and pore expansion is negligible. To
make this statement more quantitative we consider the time
immediately following the burst of pore creation. The trans-
membrane voltage plateaus at Um�1 V and the total pore
energy �W for small pore radii 0.8 nm�rp�1.5 nm is well
approximated by a linear function in that limit:

�W�rp,Um = 1 V� = − 6.4 
 1010rpkT m−1. �D1�

The SE �2� then reduces to

�n

�t
= Dp

�2n

�rp
2 + vd

�n

�rp
, �D2�

where the drift velocity is given by

vd =
Dp

kT

��W�rp�
�rp

. �D3�

The pore distribution at the REB peak resembles a delta
function at rp,min, and the total number of pores does not
change on a nanosecond time scale �see Fig. 4�c�, following
the burst of pore creation�, so the normalized solution to Eq.
�D2� is

n�rp,t� =
1

�4	Dpt
exp�−

�rp − rp,min − vdt�2

4Dpt
	 . �D4�

The time-dependent mean pore radius is readily found from

�rp�t�� =
 n�rp,t�rpdrp = rp,min + vdt . �D5�

With the diffusion constant Dp=5
10−14 m2 s−1, we find for
the mean value of the pore radius �rp�=0.83 nm after 10 ns.
The corresponding single-pore conductances Gm,Cl−

p �rp ,Um

=1 V� at pore radii rp=0.8 nm and rp=0.83 nm differ by
10%. Taking this estimate as an analytical upper limit �the
full simulation shows a smaller average pore radius, see Fig.
4�e�� for the magnitude of pore expansion we conclude that
pore expansion is a negligible effect within the nanosecond
time scale. This statement, however, depends on the value of
the diffusion coefficient Dp for which only order of magni-
tude estimates exist so far. Bier et al. �74� derived an expres-
sion for Dp, which depends on the line tension � and can be
measured in principle, but results in even smaller values
for Dp.
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